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Abstract The extended Koopmans’ theorem is
related to Fukui function, which measures the change in
electron density that accompanies electron attachment
and removal. Two approaches are used, one based on
the extended Koopmans’ theorem differential equation
and the other based directly on the expression of the
ionized wave function from the extended Koopmans’
theorem. It is observed that the Fukui function for elec-
tron removal can be modeled as the square of the first
Dyson orbital, plus corrections. The possibility of useful
generalizations to the extended Koopmans’ theorem is
considered; some of these extensions give approxima-
tions, or even exact expressions, for the Fukui function
for electron attachment.

Keywords Fukui function · Dyson orbital · Extended
Koopmans’ theorem · Conceptual density-functional
theory

1 Introduction and background

Over the last two decades, density-functional theory
(DFT) has emerged as the method of choice for rou-
tine calculations in quantum chemistry, especially for
larger systems. The primary reason for this emergence
is indubitably the fact that more rigorous wave-func-
tion based techniques cannot compete with DFT if one
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measures average accuracy per unit computational cost.
Another reason, however, is that the language of DFT
lends itself to chemical interpretation [1–3]. The sci-
ence of interpreting chemical results with DFT, usually
called conceptual density-functional theory, supersedes
conventional approaches based on molecular orbitals
or resonance because it makes contact with density-
functional theory, which is in principle exact. The
reactivity indicators of conceptual DFT, then, fully
accommodate the effects of orbital relaxation and elec-
tron correlation. Studies suggest that these effects are
sometimes very important [4–6].

However, the reactivity indicators associated with
conceptual DFT are usually computed at a relatively low
level of theory, typically Kohn–Sham DFT with approx-
imate exchange-correlation functionals. It is well known
that these methods give poor predictions of reaction
barriers and thus, while they are generally adequate for
conceptual purposes, they are not robust [7,8]. There
is no reason, however, not to use more accurate, wave-
function based, methods to compute the reactivity indi-
cators of Kohn–Sham DFT. Most of the key reactivity
indicators are readily computed if the energies and elec-
tron densities of the system, its cation, and its anion
are known. Specifically, this is enough information to
compute the chemical potential, μ [9], and the chemi-
cal hardness, η [10], using the quadratic model for the
energy [10]

μ = − I + A
2

=
(

∂E
∂N

)
v(r)

(1)

η = I − A =
(

∂2E
∂N2

)
v(r)

(2)
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Alternatively, the chemical potential and chemical
hardness can be computed using the zero-temperature
grand canonical ensemble ansatz, wherein the deriva-
tive discontinuity of the energy produces discontinuities
in the chemical potential [11–15],

μ− = −I =
(

∂E
∂N

)−

v(r)
(3)

μ+ = −A =
(

∂E
∂N

)+

v(r)
(4)

and the chemical hardness

η(M) = (I − A)δ(M − N) (N − 1 < M < N + 1). (5)

In Eqs. (1)–(5), I denotes the vertical ionization poten-
tial,

I = E
[
v(r); N − 1

]− E[v(r); N], (6)

and A denotes the vertical electron affinity,

A = E[v(r); N] − E
[
v(r); N + 1

]
, (7)

of the N-electron system at the equilibrium geometry
of the N-electron system. In density-functional theory
parlance, we say that the external potential, v(r), is held
constant as we change the number of electrons. From the
chemical potential and the chemical hardness, one can
compute other quantities like the electrophilicity [16],
nucleofugality [3,17], and electrofugality [3,17].

The chemical potential and chemical hardness are
global reactivity indicators and describe the overall reac-
tivity of the molecule. In order to determine the most
reactive places in a molecule, one needs local indicators.
The key local indicators in density-functional theory are
the electrostatic potential [18,19]

�(r) = −v(r) −
∫

ρN
(
r′)

|r − r′|dr′ (8)

and the Fukui functions [20–22],

f −(r) = ρN(r) − ρN−1(r) =
(

∂ρ(r)
∂N

)−

v(r)
(9)

f +(r) = ρN+1(r) − ρN(r) =
(

∂ρ(r)
∂N

)+

v(r)
. (10)

Here, ρM(r) represents the electron density of the
M-electron system evaluated, as before, at the geom-
etry of the N-electron system.

In addition to the preceding indices, there is grow-
ing interest in the spin-dependent indices, where the
number of α-spin and β-spin electrons is allowed to
vary independently [23]. An alternative approach to
spin-dependent DFT reactivity indicators, is to consider

not only the total number of electrons as an indepen-
dent variable, but also the number of unpaired elec-
trons(NS = Nα − Nβ) [24,28]. However, the latter
scheme addresses changes in the multiplicity of the sys-
tem (that is, changes in NS) while maintaining the same
total number of electrons, N. Such changes are related
to molecular excitation, rather than electrophilic/nucle-
ophilic reactions, and although they can be computed
from the indicators based on Nα and Nβ [29], they will
not be considered here. For this reason, we choose the
former approach, where Nα and Nβ are allowed to vary
independently. In this paper we adopt the convention
that β-spin is the minority spin channel, so removing a
β-spin electron corresponds to increasing the spin-multi-
plicity of the systems, while removing an α-spin electron
corresponds to reducing the spin-multiplicity. Spin-
dependent chemical potentials can then be defined as

μ−
α =−Iα=

(
∂E
∂Nα

)−

v(r)
=E
[
v; Nα−1, Nβ

]−E
[
v; Nα , Nβ

]

(11)

μ+
α = −Aα=

(
∂E
∂Nα

)+

v(r)
=E
[
v; Nα , Nβ

]−E
[
v; Nα+1, Nβ

]

(12)

with similar formulae for the β-spin indicators. [There
are also formulae corresponding to the quadratic model,
Eqs. (1) and (2).] In Eqs. (11) and (12), E

[
v; Mα , Mβ

]
denotes the energy of the system with Mα α-spin elec-
trons and Mβ β-spin electrons, evaluated with the exter-
nal potential v(r). There are also spin-dependent Fukui
functions. Allowing z = (r,s) to denote both the spin and
spatial coordinates of the electrons, one has

f −
α (z) = ρNα ,Nβ (z) − ρNα−1,Nβ

(z) =
(

∂ρ(z)
∂Nα

)−

v(r)
(13)

f +
α (z) = ρNα+1,Nβ

(z) − ρNα ,Nβ (z) =
(

∂ρ(z)
∂Nα

)+

v(r)
. (14)

where ρMα ,Mβ (z) denotes the electron spin-density of
the system with Mα α-spin electrons and Mβ β-spin elec-
trons. It is important to note that there are eight spin-
dependent Fukui functions. Corresponding to Eq. (13),
there are f −

α (r, α) and f −
α (r, β), which measure how the

spatial distribution of the α-spin and β-spin electrons,
respectively, changes, when an α-spin electron is re-
moved from the system. Similarly, there are two Fukui
functions corresponding to Eq. (14), plus four more
functions arising from the analogues of Eqs. (13) and
(14) for describing changes in the number of β-spin
electrons.

Most commonly, all of these reactivity indicators
are computed by first performing a Kohn–Sham DFT
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geometry optimization on the N-electron system, fol-
lowed by subsequent single-point calculations on the
N ± 1 electron systems. Since single point calculations
are much faster than geometry optimizations, the most
expensive step in this calculation is the initial geometry
determination.

The situation could be different if we were using con-
ventional, wave-function based, quantum chemistry to
compute the reactivity indicators. Especially for larger
systems, we would probably start by performing a geom-
etry optimization at a low level of theory (perhaps, again,
Kohn–Sham DFT). Then we would need to perform sin-
gle-point calculations for the N, N + 1, and N − 1 elec-
tron systems. Due to the surpassing computational cost
of conventional ab initio quantum chemistry, the three
single-point calculations would dominate the computa-
tional cost. We could, however, cut the cost by a factor
of three if we could extract the reactivity indicators from
one single-point calculation. Recently, we have shown
how this can be done using electron propagator theory
[30]. While propagator calculations have the same scal-
ing as their analogues in conventional ab initio theory,
they tend to be a little more costly. (E.g., computing the
second-order propagator is a little more expensive than
a conventional MP2 calculation.)

Electron propagator theory gives very convenient
expressions for the electrostatic potential, chemical
hardness, and chemical potential, but less convenient
forms for the Fukui functions. Here we investigate
whether the extended Koopmans’ theorem[31–36] might
give more reasonable expressions for the Fukui
functions.

The extended Koopmans’ theorem (EKT) approxi-
mates the N − 1-electron wave function of a system by
removing an optimized orbital, φEKT

k (zN), from the N-
electron system [32,33],


EKT
k,N−1

(
z1, . . . zN−1

) =
∫

φEKT
k (zN)
0,N(z1, . . . , zN)dzN

(15)

Here zi denotes both the space and spin coordinates of
electron i, 
k,M denotes the wave function of the kth
excited state of the M-electron system, and integration
with respect to z is a useful shorthand for integration

over the spatial coordinates of the electron and summing
over electron spin. φEKT

k (z) is defined so that the N−1-
electron wave functions on the left-hand-side (LHS) of
Eq. (15) are orthonormal.

The approximate ionization potential associated with
the EKT can then be written as

IEKT
k =

〈∫
φEKT

k (zN)
0,N(z1, . . . , zN)dzN

∣∣∣∫ φEKT
k (zN)

(
ĤN−1 − ĤN

)

0,N(z1, . . . , zN)dzN

〉
1...N−1〈∫

φEKT
k (zN)
0,N(z1, . . . , zN)dzN

∣∣∫ φEKT
k (zN)
0,N(z1, . . . , zN)dzN

〉
1...N−1

(16)

where ĤM denotes the Hamiltonian of the M-electron
system, and thus

ĤN−1 − ĤN = ∇2
N

2
− v(zN) −

N−1∑
j=1

1∣∣rj − rN
∣∣ . (17)

It is important to note that, using Eq. (16), we can ex-
press the ionization potential in terms of the first (k = 1)
and second (k = 2) order density matrices of the N-elec-
tron system

�k
(
z1, . . . , zk; z′

1, . . . z′
k
) =
(

Nα!Nβ !
(Nα − mα)!(Nβ − mβ

)!
)

×
∫∫


∗
0,N
(
z′

1, . . . , z′
k, zk+1, . . . zN

)

0,N

×(z1, . . . zN)dzk+1 . . . dzN , (18)

where mα and mβ are the number of α-spin and β-spin
indices,

mσ ≡
k∑

i=1

δσσi =
k∑

i=1

δσσ ′
i

(19)

Specifically, we have

IEKT
k =

(
2

(N−1)

) ∫∫ ∫∫
φ∗

k

(
z′

1
)
φk(z1)

(
∇2

1
2 − v(z1) − N−1

|r2−r1|
)

�2
(
z1, z2; z′

1, z2
)
dz1dz′

1dz2∫∫
φ∗

k(z′
1)φk(z1)�1(z1; z′

1)dz1dz′
1

. (20)

Determining the orbitals, φEKT
k (z), for which Eq. (20) is

stationary gives approximations to the stationary state
wave functions of the N − 1-electron system and the
ionization potentials pertaining thereto. These station-
ary values and orbitals are usually determined using the
equations
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∫
φEKT

k

(
z′

1
)(−∇2

1

2
+ v(z1)

)
�1
(
z1, z′

1
)
dz′

1

+2
∫∫

φEKT
k

(
z′

1
)�2
(
z1, z2; z′

1, z2
)

|r1 − r2| dz′
1dz2

= (−Ik)

∫
φEKT

k

(
z′

1
)
�1
(
z1, z′

1
)
dz′

1. (21)

Since the density matrices are commonly available at
the conclusion of a single-point calculation, the EKT
ionization potentials and orbitals are readily computed
at the end of the computational procedure. Because the
EKT equations are single-particle equations, the cost of
finding the EKT orbitals is negligible compared to the
cost of the underlying ab initio method [37,38].

The remarkable feature of the extended Koopmans’
theorem is that, for a Coulombic system, the lowest ion-
ization potential is exact and the extended-Koopmans’
theorem orbital is simply related to the Dyson orbital
[33,36,39–44],

g0(zN) = √
N
∫∫∫


∗
0,N−1

(
z1, . . . , zN−1

)

×
0,N(z1, . . . , zN)dz1 . . . dzN−1, (22)

according to

g0(z) = δσσ ′√
m0Nσ

∫
�1
(
z, z′)φEKT

0
(
z′)dz′. (23)

The number 0 � m0 � 1 is the pole strength, and is
chosen so that the Dyson orbitals are normalized. Nσ is
the number of electrons with the same spin as the EKT-
orbital and the Dyson spin-orbital. (The two orbitals
always have the same spin.)

It seems that many of the higher ionization poten-
tials and Dyson orbitals from the EKT are also exact
[40,45,46], but there is no general proof. When the N-
electron state is not a singlet, the proof of exactness
can be generalized to the lowest multiplicity-raising and
multiplicity-lowering ionizations. More generally, Per-
nal and Cioslowski have shown that every state obtained
from the extended Koopmans’ theorem is exact if the
N−1st order reduced density matrix has no zero eigen-
values (i.e., �N−1 is strictly positive definite) [41]. Based
on this result, one might expect that for systems with no
symmetry and relatively long-range interparticle forces
(so that the motion of electrons is significantly corre-
lated), �N−1 will be positive definite and all the station-
ary values of Eq. (20) correspond to exact ionization
potentials and Dyson orbitals [41].

2 Extended Koopmans’ theorem approach
to the Fukui function for electron removal

The Fukui function from below (also called the nucleo-
philic Fukui function) can be determined directly from
the extended Koopmans’ theorem: using the definition
of the Fukui function and the EKT wave function
[Eq. (15)] one has

f −
α (r1, α) = ρNα ,Nβ (r1, α) − ρNα−1,Nβ

(r1, α)

= Nα

∫∫∫

∗

0,N(r1, α, z2 . . . zN)
0,N(r1, α, z2 . . . zN)dz2 . . . dzN

−(Nα−1)

∫∫∫

∗

0,N−1

(
r1, α, . . . , zN−1

)

0,N−1

(
r1, α, . . . zN−1

)
dz2 . . . dzN−1

= 2Nα

Nα(Nα − 1)

∫
�2
(
r1, α, zN ; r1, α, z′

N
)
δσNαδ

(
rN − r′

N
)
dzNdz′

N (24)

− 2(Nα − 1)

Nα(Nα − 1)

∫∫ (
φEKT

0
(
r′

N , α
))∗

φEKT
0 (rN , α)�2

(
r1, α, zN ; r1, α, z′

N
)
dzNdz′

N

=
∫∫

�2
(
r1, α, z2; r1, α, z′

2
)
⎡
⎢⎢⎢⎢⎣

2δσ2αδσ ′
2α

δ
(
r2 − r′

2
)

Nα − 1

− 2
(
φEKT

0

(
r′

2, α
))∗

φEKT
0 (r2, α)

Nα

⎤
⎥⎥⎥⎥⎦dz2dz′

2
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with a similar form for the β-spin component, f −
α (r, β),

f −
α (r1, β) = ρNα ,Nβ (r1, β) − ρNα−1,Nβ

(r1, β)

= Nβ

∫∫∫

∗

0,N(r1, β, z2 . . . zN)
0,N(r1, β, z2 . . . zN)dz2 . . . dzN

−Nβ

∫∫∫

∗

0,N−1

(
r1, β, . . . zN−1

)

0,N−1

(
r1, β, . . . zN−1

)
dz2 . . . dzN−1

= 2Nβ

NαNβ

∫
�2
(
r1, β, zN ; r1, β, z′

N
)
δσNαδ

(
rN − r′

N
)
dzNdz′

N (25)

− 2Nβ

NαNβ

∫∫ (
φEKT

0
(
r′

N , α
))∗

φEKT
0 (rN , α)�2

(
r1, β, zN ; r1, β, z′

N
)
dzNdz′

N

= 2
Nα

∫∫
�2
(
r1, β, z2; r1, β, z′

2
)
⎡
⎣ δσ2αδσ ′

2α
δ
(
r2 − r′

2
)

−
(
φEKT

0
(
r′

2, α
))∗

φEKT
0 (r2, α)

⎤
⎦dz2dz′

2

There are similar formulae for f −
β (z).

Next, we perform a cumulant decomposition of the
second-order reduced density matrix [47],

2�2
(
z1, z2; z′

1, z′
2
) = �1

(
z1, z′

1
)
�1
(
z2, z′

2
)

−�1
(
z1, z′

2
)
�1
(
z2, z′

1
)+ (2)

(
z1, z2; z′

1, z′
2
)
. (26)

Inserting these relations into Eq. (24), we have

f −
α (r1, α) = ρNα ,Nβ (r1, α)

(
Nα

Nα − 1
− Nα

Nα

)

−
∫

�1(r1, α; r2, α)�1(r2, α; r1, α)dr2

Nα − 1

+ 1
Nα

∣∣∣∣
∫

�1(r1, α; r2, α)φEKT
0 (r2, α)dr2

∣∣∣∣
2

+
∫∫

(2)
(
r1, α, z2; r1, α, z′

2
)

×

⎡
⎢⎢⎢⎢⎣

2δσ2αδσ ′
2α

δ
(
r2 − r′

2
)

Nα − 1

− 2
(
φEKT

0

(
r′

2, α
))∗

φEKT
0 (r2, α)

Nα

⎤
⎥⎥⎥⎥⎦dz2dz′

2

(27)

and so

f −
α (r1, α) = m0|g0(r1, α)|2

+ρNα ,Nβ (r1, α) − ∫ �1(r1, α; r2, α)�1(r2, α; r1, α)dr2

Nα − 1

+
∫∫

(2)
(
r1, α, z2; r1, α, z′

2
)

×

⎡
⎢⎢⎢⎢⎣

2δσ2αδσ ′
2α

δ
(
r2 − r′

2
)

Nα − 1

− 2
(
φEKT

0

(
r′

2, α
))∗

φEKT
0 (r2, α)

Nα

⎤
⎥⎥⎥⎥⎦dz2dz′

2 (28)

Similarly, for the β-spin component,

f −
α (r1, β) = 1

Nα

∫∫
(2)
(
r1, β, z2; r1, β, z′

2
)

×
⎡
⎣ δσ2αδσ ′

2α
δ
(
r2 − r′

2
)

−
(
φEKT

0
(
r′

2, α
))∗

φEKT
0 (r2, α)

⎤
⎦dz2dz′

2. (29)

In the preceding two derivations, we have used the fact
that

Nσ δσσ ′ =
∫ (

φEKT
0
(
z′))∗�1

(
z, z′)φEKT

0 (z)dz, (30)

where σ denotes the spin of the EKT orbitals. This equa-
tion, which just says that EKT orbitals with different
spin are orthogonal with respect to the metric defined
by the first-order density matrix, directly follows from
the normalization condition for the N −1-electron wave
function. The final expression, Eq. (28), expresses the
Fukui function as the square of the Dyson orbital, plus a
correction. A result of the same form arises in electron
propagator theory [30].

The natural orbitals are orthogonal and are related
to the first-order reduced density matrix by the
formula

�1
(
z, z′) =

∞∑
i=0

niχ
∗
i
(
z′)χi(z)

=
∞∑

i=0

ni |σi〉 χ∗
i
(
r′)χi(r) 〈σi|. (31)
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It follows from Eq. (31) that the spin-components of
the first-order density matrix are

�1
(
r, α, r′, α

) ≡
∞∑

i=0

niδσiαχ∗
i
(
r′)χi(r)

�1
(
r, β, r′, β

) ≡
∞∑

i=0

niδσiβχ∗
i
(
r′)χi(r)

�1
(
r, α, r′, β

) ≡ 0

�1
(
r, β, r′, α

) ≡ 0 (32)

Using the definition of the natural spin orbitals and the
fact that the natural orbital occupation numbers are al-
ways between zero and one, one sees that the second
term in the last equality of Eq. (28) is never negative:
∫

�1
(
z, z′)�1

(
z′, z
)
dz′

=
∞∑

i=0

∞∑
j=0

ninjχi(z)χj(z)
∫
χi
(
z′)χj
(
z′)dz′

=
∞∑

i=0

∞∑
j=0

ninjχi(z)χj(z)δij =
∞∑

i=0

n2
i |χi(z)|2

� �1(z, z) = ρNα ,Nβ (r, σ) (33)

(Moreover, the second term is only zero when the wave
function is a Slater determinant, in which all the natu-
ral orbital occupation numbers are either zero or one.)
There is decisive numerical evidence that the Fukui
function is sometimes negative [48], and clearly this
behavior cannot be described without including the term
that depends on the density-matrix cumulant, (2). The
reader may wish to verify that both Eqs. (28) and (29)
are exact for noninteracting electrons, where (2) =
0, m0 = 1, and g0(z) is equal to the HOMO orbital.

An alternative expression for the Fukui function can
be derived directly from the equations for the extended
Koopmans’ theorem orbitals, Eq. (21). Multiplying both
sides of Eq. (21) by

(
φEKT

k (z1)
)∗

and integrating, we
obtain

− δσ1σ
′
1
Nσ1 Ik =

∫∫
φEKT

k

(
z′

1
)(−∇2

1

2
+ v(z1)

)

×�1
(
z1, z′

1
)(

φEKT
k (z1)

)∗
dz1dz′

1

+2
∫∫∫

φEKT
k

(
z′

1
)�2
(
z1, z2; z′

1, z2
)

|r1 − r2|
×
(
φEKT

k (z1)
)∗

dz1dz′
1dz2 (34)

and so

f −(z′′) = 1
Nσ1

∫∫
φEKT

k

(
z′

1
)(

δ
(
z1 − z′′))�1

(
z1, z′

1
)

×
(
φEKT

k (z1)
)∗

dz1dz′
1

+ 2
Nσ1

∫∫∫
φEKT

k

(
z′

1
)(

φEKT
k (z1)

)∗
|r1 − r2|

×δ�2
(
z1, z2; z′

1, z2
)

δv(z′′)
dz1dz′

1dz2

=
√

m0

Nσ ′′

(
φEKT

k

(
z′′))∗g0

(
z′′)

+ 2
Nσ1

∫∫∫
φEKT

k

(
z′

1
)(

φEKT
k (z1)

)∗
|r1 − r2|

×δ�2
(
z1, z2; z′

1, z2
)

δv(z′′)
dz1dz′

1dz2 (35)

Insofar as this formula depends on difficult to compute
perturbations of the second-order reduced density ma-
trix, it is probably not very useful. However, the first
term in Eq. (35) is probably more closely normalized
than the first term in Eq. (28). That is, we suspect that
neglecting the higher-order terms in Eq. (35) may be
more justified than it is for Eq. (28).

3 Generalized extended Koopmans’ theorem approach
to the Fukui function for electron addition

In the previous section, we showed how the change in the
electron density associated with electron removal can be
computed from ab initio wave function theory using the
extended Koopmans’ theorem. Owing to the exactness
of the extended Koopmans’ theorem, our results were
exact. The situation is not so favorable when we are
examining electron addition. If we make an approxima-
tion to the N + 1 electron wave function that is anal-
ogous to (15), i.e. we add an orbital to the N-electron
wave function and then antisymmetrize the result,


EKT
k,N+1

(
z1, . . . zN−1

) = A
(

0,N(z1, . . . , zN)

×ϕEKT
k

(
zN+1

))
(36)

then correlations between the additional electron and
the original electrons have been neglected. This ansatz
was already present in the original paper of Smith and
Day [32], but owing to the expected inaccuracies, it has
not been thoroughly tested.

Equations like Eq. (36) are most readily stated in
second quantization. If we write the orbital as a linear
combination of basis functions,
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ϕEKT
k (z) =

∑
i

cEKT
k,i χi(z) (37)

then Eq. (36) can be written in terms of the creation
operators for these orbitals,
∣∣∣
EKT

k,N+1

〉
=
∑

i

cEKT
k,i a+

i

∣∣∣∣
0,N

〉
. (38)

Insofar as the main shortcoming of this expression is the
fact that the additional electron is not correlated with
the original electrons, one might imagine constructing
a N + 1 electron wave function by first annihilating an

electron, and then adding two electrons. In this way, the
additional electrons are partially correlated. The result-
ing expression for the N + 1 electron wave function is∣∣∣
EKT

k,N+1

〉
=
∑
i1i2

∑
j

cEKT
k,ji1i2

a+
i2 a+

i1 aj

∣∣∣
0,N

〉
, (39)

which is reminiscent of the particle–particle–hole terms
that contribute to the electron affinity in electron prop-
agator theory [49,50].

This general ansatz provides the basis for an en-
tire family of extended-Koopmans’ theorems. One starts
with a fundamental expression for the wave function of
the N + P − Q electron system,

∣∣∣
EKT
k,N+P−Q

〉
=
∑

i1i2...iP

∑
j1j2···jQ

cEKT
k,j1j2...jQi1i2...iP

a+
iP · · · a+

i2 a+
i1 ajQ · · · aj2 aj1

∣∣
0,N
〉
, (40)

and then seeks to minimize the energy. The “general-
ized extended Koopmans’ theorem” is then derived in
the usual way, starting with the energy of the N + P − Q
electron system

Ek,N+P−Q = min︸︷︷︸
cEKT

k,j1j2 ...jQi1i2 ...iP

∑
i1...iP

∑
j1...jQ

∑
i′1...i

′
P

∑
j′1...j

′
Q

⎡
⎢⎣

cEKT
k,j1j2...jQi1i2...iP

cEKT
k,j′1j′2...j′Qi′1i′2...i′P

×
〈

0,N

∣∣∣∣a+
j′1

· · · a+
j′Q

ai′1 · · · ai′PHa+
iP · · · a+

i1 ajQ · · · aj1

∣∣∣∣
0,N

〉
⎤
⎥⎦

∑
i1...iP

∑
j1...jQ

∑
i′1...i

′
P

∑
j′1...j

′
Q

⎡
⎢⎣

cEKT
k,j1j2...jQi1i2...iP

cEKT
k,j′1j′2...j′Qi′1i′2...i′P

×
〈

0,N

∣∣∣∣a+
j′1

· · · a+
j′Q

ai′1 · · · ai′P a+
iP · · · a+

i1 ajQ · · · aj1

∣∣∣∣
0,N

〉
⎤
⎥⎦

(41)

where H denotes the second-quantized Hamiltonian.
Next one subtracts off the energy of the N electron
system,

Ik,N+P−Q = min︸︷︷︸
cEKT

k,j1j2 ...jQi1i2 ...iP

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
i1...iP

∑
j1...jQ

∑
i′1...i

′
P

∑
j′1...j

′
Q
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⎢⎣

cEKT
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cEKT
k,j′1j′2...j′Qi′1i′2...i′P

×
〈

0,N

∣∣∣∣a+
j′1

· · · a+
j′Q

ai′1 · · · ai′PHa+
iP · · · a+

i1 ajQ · · · aj1

∣∣∣∣
0,N

〉
⎤
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∑
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∑
j1...jQ

∑
i′1...i

′
P

∑
j′1...j

′
Q
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cEKT
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×
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0,N
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j′1

· · · a+
j′Q

ai′1 · · · ai′P a+
iP · · · a+

i1 ajQ · · · aj1
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0,N

〉
⎤
⎥⎦

− E0,N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= min︸︷︷︸
cEKT

k,j1j2 ...jQi1i2 ...iP

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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×
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Q

⎡
⎢⎣

cEKT
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cEKT
k,j′1j′2...j′Qi′1i′2...i′P

×
〈

0,N

∣∣∣∣a+
j′1
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×
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∣∣∣∣a+
j′1

· · · a+
j′Q

ai′1 · · · ai′P a+
iP · · · a+
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∣∣∣∣
0,N

〉
⎤
⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(42)
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The second line of this equation holds only if 
0,N is
the exact eigenfunction of this second-quantized Ham-
iltonian. Equation (42) is then rearranged into the usual
second-quantized expression of the extended Koop-
mans’ theorem,

Ik,N+P−Q = min︸︷︷︸
cEKT

k,j1j2 ...jQi1i2 ...iP

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
i1...iP

∑
j1...jQ

∑
i′1...i

′
P

∑
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Q
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cEKT
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[
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i1 ajQ · · · aj1
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0,N

〉
⎤
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∑
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∑
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∑
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P

∑
j′1...j
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Q
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cEKT
k,j1j2...jQi1i2...iP

cEKT
k,j′1j′2...j′Qi′1i′2...i′P

×
〈

0,N

∣∣∣∣a+
j′1

· · · a+
j′Q

ai′1 · · · ai′P a+
iP · · · a+
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0,N

〉
⎤
⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (43)

The resulting expressions are exact when P = 0; in that
case, only electron removal is modeled, and the method
is exact because, for a specific choice of coefficients, it
will give the same result as sequentially applying the
usual extended Koopmans’ theorem for one-electron
removal Q times. All of the cases with P = 0 were
addressed in the original paper by Morrell et al. [33]. The
expression is also exact when Q = N (in which case the
method reduces to full configuration interaction). The
most interesting cases are when P and Q are both small,
but Q is greater than zero (so that the additional electron
is correlated). The P = Q = 2 case might be interesting
for studying excitations. The P = 1, Q = 0 case was first
explored by Smith and Day [32]. The P = 2, Q = 1 case
[cf. Eq. (39)] is the case of greatest interest here. Solving
this case requires that one solve the eigenvalue problem

Vc = nc (44)

where

V ≡
〈

0,N

∣∣∣a+
j′1

ai′1 ai′2

[
H, a+

i2 a+
i1 aj1

]∣∣∣
0,N

〉

n ≡
〈

0,N

∣∣∣a+
j′1

ai′1 ai′2 a+
i2 a+

i1 aj1

∣∣∣
0,N

〉
(45)

replace the usual extended Koopmans’ theorem matri-
ces. Using the commutation relations for creation and
annihilation operators,

V = a+
j′1

ai′1 ai′2

⎛
⎜⎜⎜⎜⎝

δr,i2δs,i1 a+
r′ a+
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−δr,i2 a+
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s′ a
+
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r′ a+
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+
i1 araj1
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+
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+δr,i1 a+
r′ a+

s′ a
+
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r′ a+
s′ a

+
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⎞
⎟⎟⎟⎟⎠

(46)

n = δi′2,i2δi′1,i1

〈
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j′1

aj1
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0,N

〉
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∣∣∣a+
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aj1
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−δi′2,i2

〈
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i1 ai′1 aj1

∣∣∣
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−δi′1,i1
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∣∣∣a+
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i2 ai′2 aj1
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〉

+δi′2,i1
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∣∣∣a+
j′1

a+
i2 ai′1 aj1
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0,N

〉

+δi′1,i2

〈

0,N

∣∣∣a+
j′1

a+
i1 ai′2 aj1
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0,N

〉

+
〈

0,N

∣∣∣a+
j′1

a+
i2 a+

i1 ai′1 ai′2 aj1

∣∣∣
0,N

〉
(47)

and so this theory requires computing the third- and
fourth-order reduced density matrices. This is better
than the na ive expectation (normally modeling a three-
electron process for a two-electron reduced Hamilto-
nian operator would require the fifth-order reduced
density matrix), but it is still not a very practical ap-
proach. One could, however, derive (necessarily approx-
imate) results for the Fukui function for electron addi-
tion based on this ansatz.

There is an alternative that requires only the third-
order reduced density matrix. Instead of considering the
P = 2, Q = 1 generalized EKT for the molecule itself,
we could investigate the P = 0, Q = 2 generalized EKT
for the N + 1 electron system at the optimal geome-
try for the N-electron system. This resulting method is
more difficult that the usual extended Koopmans’ the-
orem because the third-order reduced density matrix is
needed and also because one is not looking for optimal
orbitals, but optimal geminals. Since we are only inter-
ested in the N − 1 electron ground state, we can use a
more efficient procedure. First, we determine the Fukui
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function from above for the N-electron system by eval-
uating the Fukui function from below for the N +1 elec-
tron system at appropriate geometry for N electrons. We
then form the second-order reduced density matrix for
the ground state of the N-electron from the third-order
reduced density matrix of the N + 1-electron system,

�
(N)
2

(
z1, z2; z′

1, z′
2
)

=
(

3
N − 2

)∫
· · ·
∫ (

φEKT
k=0 (z3)

)∗
φEKT

k=0

(
z′

3
)

×�
(N+1)
3

(
z1, z2, z3; z′

1, z′
2, z′

3
)
dz3dz′

3. (48)

The usual extended Koopmans’ theorem equations, (21),
are now solved, and the Fukui functions from below are
determined using the expressions in Sect. 2. Though the
spin-resolved Fukui functions from below are readily
obtained by this procedure, determining the spin-
resolved Fukui functions from above requires informa-
tion about excited states of the N + 1-electron system.

This method is a practical alternative to conventional
finite difference formulae for the Fukui functions when
the third-order reduced density matrix can be computed
from one’s computational method. Using the second-
order reduced density matrix of the ground state of the
anion will produce two of the four Fukui functions from
above (the Fukui functions linking the ground-state spin
densities of the neutral species and the anion) using the
ordinary extended Koopmans theorem. Next, one uses
Eq. (48) to determine the ground-state second order
density matrix of the neutral system from the third-order
reduced density matrix of the anion. All four Fukui func-
tions from below are then computed. When the ground
state of the neutral molecule is a closed-shell species,
the spin-symmetry ensures that the two doublet states
of the anion are equivalent, and so the remaining two
Fukui functions from above are identical to the ones that
were computed in the first step of this procedure. When
the ground state of the neutral molecule has multiplicity
S 
= 1, the two pairs of Fukui functions from above are
distinct and density matrices for the ground-state anions
of multiplicity S + 1 and S − 1 would both be needed.

4 Conclusion

Perhaps the most attractive feature of conceptual
density-functional theory, as compared to alternative
qualitative descriptions of chemical reactivity based on
molecular orbitals or resonance structures, is its math-
ematical rigor. Conceptual DFT is, in principle, exact.
Nonetheless, most applications of conceptual DFT
employ approximate density-functionals or other similar
models (e.g., Hartree–Fock) based on independent-

electron descriptions. For most purposes, this is adequate.
However, thorough and rigorous investigations of con-
ceptual density-functional theory require moving to
more accurate computational methods. As a first step
in this direction, we recently showed how to compute
chemical reactivity indicators using electron propagator
theory [30]. For describing electron removal processes,
however, the extended Koopmans’ theorem seems to
give superior accuracy to electron propagator theory.
This is certainly true for extremely accurate full-CI
implementations, but may also be true for approximate
implementations based on conventional many-body
approaches to quantum chemistry (e.g., perturbation
theory) [38].1

Thus motivated, in this paper we have showen how
the extended Koopmans’ theorem can be used to com-
pute ionization potentials and Fukui functions for elec-
tron removal (Sect. 2). Electron affinities and Fukui
functions for electron attachment can also be computed,
although the most efficient way to do so is to start from
a calculation of the N +1 electron system (Sect. 3). This
general approach provides access to the entire family
of conceptual DFT indices that are relevant for describ-
ing electron-transfer processes. In all cases, the primary
computational cost is that associated with the underly-
ing ab initio calculation for the second-order reduced
density matrix. (The third-order reduced density ma-
trix must be computed when both electron attachment
and electron removal are of interest. However, because
the number of ambiphilic reagents is rather small, infor-
mation about the third-order density matrix is rarely
needed.) Once the second-order reduced density matrix
is obtained, the extended Koopmans’ theorem is solved.
From the results, one can construct not only the usual
Fukui functions, but all the related spin-Fukui function
indicators. In light of results from electron propagator
theory [30], it is unsurprising that the change in σ -spin
electron density associated with removal of a electron
of the same spin can be written in terms of square of the
Dyson orbital for removal of a σ -spin electron, plus a
correction related to orbital relaxation and electron cor-
relation [cf. Eq. (28)]. The change in σ -spin density when
an electron of opposite spin is removed depends only
on the cumulant of the second-order reduced density
matrix [cf. Eq. (29)]; this is unsurprising if one con-
siders that opposite-spin electrons move independently
whenever this term is set equal to zero. Though it is most

1 We, however, would prefer propagator theory methods to ex-
tended Koopmans’ theorem methods when many-body expansion
techniques are used, mostly since propagator methods have been
more thoroughly tested, but also because propagator methods
may be more efficient computationally.
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computationally efficient to treat electron attachment to
the N-electron system as electron detachment from the
N + 1-electron system, one may protest that such an ap-
proach is inelegant, and not in keeping with the spirit
of the extended Koopmans’ theorem. For that reason,
we have derived a family of generalized extended Ko-
opmans’ theorems which can be used to model elec-
tron attachment with greater accuracy than the original
approach proposed by Smith and Day [32]. Even the
simplest of these approaches uses the fourth-order re-
duced density matrix, and so these results are primarily
of academic interest. Nonetheless, the general construc-
tion serves to emphasize the ingenuity in the extended
Koopmans’ theorem construction because it allows one
to treat the energy differences (relative to any eigen-
state of the N-electron system) of k-electron processes
(e.g., removal of one electron with addition of two elec-
trons as a k = 3 approach to electron affinities) using
only the k+1-order reduced density matrix, whereas the
k+2-order reduced density matrix would be required to
construct the energy directly. The dependence of these
methods on multiple creation and annihilation opera-
tors [cf. Eqs. (40)–(43)] is reminiscent of the forms that
arise in the MCEP [51] and MCSTEP [52] methods.

Future work should concentrate on the computa-
tional implementation of these ideas and comparison
to the usual, more approximate, methods for comput-
ing Fukui functions, ionization potentials, and electron
affinities. Such comparisons will hopefully establish the
general reliability of commonly employed approxima-
tions. However, at this stage little of the methodology
for computing Fukui functions, chemical potentials, and
chemical hardnesses has been thoroughly tested against
accurate results. What we do know is that, in general,
the existing methods “work”, in the sense that they give
reasonable agreement with intuitive expectations and
experimental findings. Despite the utility of common ap-
proaches, maybe even because of their utility, it is impor-
tant to establish a hierarchy of methods for accurately
computing chemical reactivity indicators. When com-
mon approaches—e.g., Kohn–Sham density-functional
theory with approximate exchange-correlation poten-
tials and moderate basis sets,—fail, methods like elec-
tron propagator theory and the extended Koopmans’
theorem allow one to determine whether the problem is
theoretical (conceptual DFT indicators do not work for
a given chemical system) or computational (the method
used to compute the chemical reactivity indicators is
inadequate). The full-CI + extended Koopmans’ the-
orem paradigm [37] rests at the very pinnacle of this
hierarchy, and can be used to provide benchmark re-
sults for small systems. At lower levels, electron propa-
gator theory and the extended Koopmans’ theorem (but

using more practical ab initio methods for computing the
density matrices [38]) are practical computational ap-
proaches for many molecules of chemical interest and
should give more accurate results than typical Kohn–
Sham DFT calculations of conceptual DFT indicators.
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